

Rejillas Pultruidas en Fibra de Vidrio (**FRP**)
Catálogo de Producto
2021

Quienes somos

Somos CAVAR S.A. una empresa con casi 40 años de trayectoria, apasionada por el trabajo, la innovación y creación de valor sistemático para la in dustria y la sociedad.

Qué buscamos

Potencializar la capacidad y las aptitudes de nuestros colaboradores que permitan crear una cultura de servicio al cliente, siendo esta una promesa de valor que nos lleve a brindar nuestro portafolio a diferentes sectores industriales y de la telecomunicación.

A dónde vamos

Nuestra visión HORN 2030, es transformar el sistema de la construcción y el trabajo por medio de la aplicación de los materiales compuestos con soluciones innovadoras.

Seremos una organización cada vez mas robusta, con presencia global, en la que procuramos por medio del diseño, promover los valores éticos, estéticos y funcionales con todo lo que creamos e intervenimos.

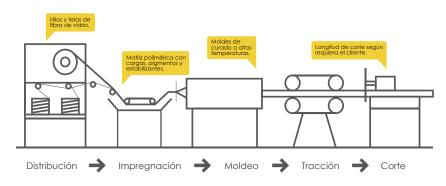
Índice

Сар.		Pag
01	Poliéster Reforado con Fibra de Vidrio	01
02	Rejillas Pultruidas	02
03	Caracteristicas Técnicas de los Materiales	03
04	Información sobre los componentes	
	de las Rejillas FRP	04
05	Resistencia Química FRP/PRFV	05
06	Rejillas Pultruidas; Configuración	07
07	Tipos de Rejillas Pultruidas	11
80	Capacidad de Carga	12
09	Acabado y Señalización	12
10	Beneficios	14

FRP/PRFV

01. Poliéster Reforzado con Fibra de Vidrio

Pultrusion



El PRFV (plástico reforzado con fibra de vidrio) es un material compuesto, formado por una matriz o resina que se combina con fibras de vidrio para obtener un producto con mejores propiedades mecánicas.

Proceso

Beneficios del FRP frente a otros materiales ACERO **ALUMINIO** MADERA Resistencia a la corrosión **MUY ALTA** BAJO MODERADA ALTA Resistencia mecánica **ALTA ALTA** MODERADA BAJA MODERADO **BAJO BAJO ALTO** Peso Conductividad Eléctrica **MUY BAJO** ALTA ALTA BAJO **MUY BAJO** Conductividad Térmica **ALTA** MUY ALTA BAJO Transparencia Electromagnética **ALTA** BAJA MODERADA MODERADA Costo de Mantenimiento **BAJO** ALTO MODERADO ALTO

Rejillas Pultruidas FRP

Las rejillas pultruidas son fabricadas mediante el ensamble de perfiles estructurales longitudinales de sección en forma de I con varillas separadoras de 10mm de diámetro, obtenidas mediante el proceso de Pultrusion y empleando separadores termoplásticos color negro. El proceso de pultrusion permite obtener perfiles con matriz en resina poliéster o vinilester y refuerzo de fibra de vidrio en forma de hilos (roving) y tejidos (mat). Estos materiales compuestos ofrecen rigidez y alta resistencia mecánica dado por el refuerzo utilizado y alta resistencia a la corrosión, a los efectos ambientales y químicos, dada por la matriz utilizada.

Son la solución mas segura y económica en el uso de pisos de subestaciones eléctricas, plantas de tratamiento de aguas residuales, plataformas en plantas químicas, plantas de alimentos, plantas de aceites y grasas, para trabajos eléctricos, obras civiles, mezanines, areas de acceso, estaciones de trabajo, en ganadería, piso para criaderos de porcinos, entre otras. Proporcionan la seguridad de mantener su alta resistencia estructural inalterable en el tiempo, con un bajo mantenimiento.

03. Propiedades Físicas y Mecánicas

Generales

Los perfiles estructurales son fabricados mediante proceso de pultrusión (polimerización en caliente de un perfil arrastrado en una hilera) y contienen hasta un 70% de fibra de vidrio que garantiza una elevada resistencia mecánica. Su estructura compuesta por fibras de vidrio continuas direccionales, determina una excelente resistencia a los golpes y al esfuerzo (no se producen deformaciones permanentes por sobrecargas). Nuestros perfiles en PRFV (Plásticos Reforzados con Fibras de Vidrio) presentan diferentes ventajas como la extraordinaria rigidez, la resistencia a la corrosión, el aislamiento eléctrico y el peso ligero. Los perfiles HORN® han sido concebidos para usarlos como elementos de apoyo con todas las garantías de seguridad.

Ventajas

Resistencia a la corrosión y resistencia mecánica

Las bandejas portacables HORN® cuentan con un elevado porcentaje de fibra de vidrio en sus componentes estructurales; lo que ofrece una notable resistencia en relación con el peso sostenido y una gran rigidez longitudinal.

Uso muy sencillo

Son fáciles de montar, cortar y armar; no requiere de equipos especializados. No requieren mantenimiento; Gracias a las características intrínsecas del material, las bandejas portacables en PRFV no requieren pintado y no necesitan ningún tipo de mantenimiento.

Transparencia electrónica

Las características del material empleado no influyen en las frecuencias de radio oelectromagnéticas, permitiendo su instalación en aplicaciones "sensibles".

Peso ligero

Gracias a que su peso, que es de la mitad con respecto a las bandejas de acero, su traslado resulta sencillo y no hacen falta equipamientos pesados, lo que permite un importante ahorro de energías.

Aislamiento térmico y eléctrico

Las bandejas portacables en PRFV no conducen electricidad (debido a su composición), lo que brinda mayor seguridad en el área de trabajo.

Propiedades eléctricas				
Rigidez dieléctrica.	Superior a 25 KV			
Corriente de fuga.	Inferior a 90 μA			

03. Propiedades Físicas y Mecánicas

	Características	PRFV	
Característica	Valor		Unidad
Rigidez dielectrica AC	55		kV
Fuga de corriente DC	88		υA
Densidad	2,124		g/cm³
Absorción de agua	0.63		%
Resistencia flexión (seco)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	900,5767488	523,05	17,81
Flange lengthwise	407,01604	481,62	17,30
Web crosswise	594,98262	149,93	7,55
Resistencia tracción (seco)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	24,056	517,23	33,02
Flange lengthwise	24,060	512,21	32,65
Resistencia compresión (seco)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	7,65282	168,69	8,74
Flange lengthwise	9,60017	208,58	9,53
Web crosswise	3,22614	70,45	2,60
Resistencia flexión (húmedo)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	784,56915	456,45	17,55
Resistencia tracción (húmedo)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	26,838	551,09	29,66
Resistencia compresión (húmedo)	Fuerza máxima (N)	Esfuerzo máximo (MPa)	Módulo a flexión (GPa)
Web lengthwise	7,94575	7,94575	167,36

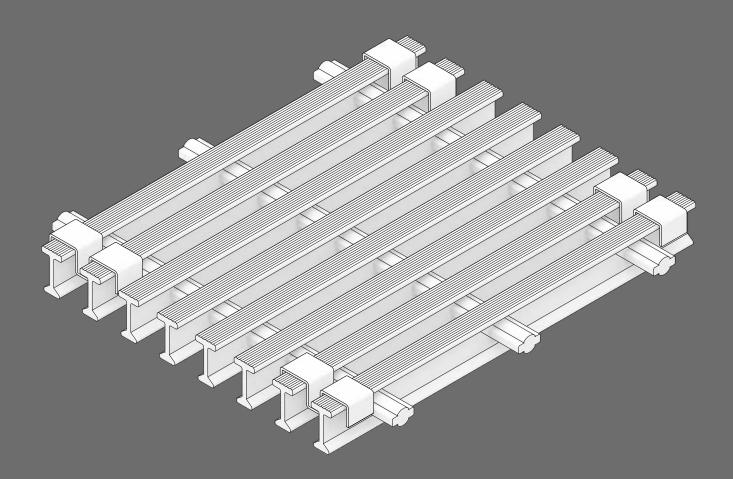
04. Información sobre los componentes de las Rejillas FRP

Material	% peso del material			
Resina poliéster Polimerizada	30% al 40%			
Fibras de vidrio	70% al 60%			
Carbonato de calcio y otros componentes	10 al 20%			

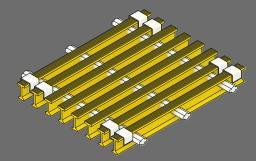
05. Resistencia Química FRP/PRFV

Temperaturas máximas operativas en grados centígrados para laminados resistentes químicamente, fabricados en resina poliéster, de acuerdo al porcentaje de concentración presentado. En esta tabla se presentan algunos agentes químicos a los cuales pueden estar sometidas las bandejas portacables.

Tabla de resistencia química					
Agente Químico	Concentración %	Resina Poliester			
Agenie Quinico	Concentración /s	Temperaturas Maximas °C			
Ácido Clorhídrico	25	45			
Ácido Crómico	10	55			
Ácido Fluorhídrico	20	33			
Ácido Nítrico	20	40			
Ácido Sulfúrico	65	65			
Amoniaco	20	25			
Mercurio	100	60			
Soda caustica	10	45			
Solución galvanizada de cromo	***	25			
Solución galvanizada de Níquel	***	65			
Bicarbonato de Sodio	SAT	70			
Nitrato de Aluminio	10	65			
Permanganato de Potasio	SAT	25			
Sulfato de Cobre	SAT	70			
Agua de Mar	***	70			
Cloro	Gas	70			
Monóxido de Carbono	Gas	75			
Sulfuro de Hidrógeno gaseoso	100	55			
Ácido cítrico	SAT	70			
Acido esteárico	***	65			
Alcohol etílico	95	25			
Líquido de frenos	本本本	25			
Glicerina	100	70			
Aceite diésel	100	25			
Aceite Lubricante	100	40			
Aceite mineral	100	40			
Aceite para transformadores	100	40			
Parafina	100	25			
Cebo	100	70			
Urea	2	55			

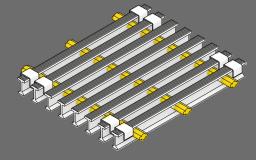


05. Resistencia Química FRP/PRFV

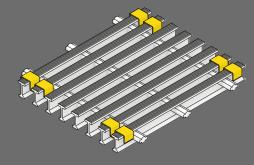

	Ambiente Químico	Nivel de resistencia
	Ácidos	Media
	Bases	Baje
	Disolventes Orgánicos	No presenta
	Disolventes Clorados	No Presenta
	Agua de mar	Alta
171	Interperie	Alta

Rejillas Pultruidas

06. Configuración



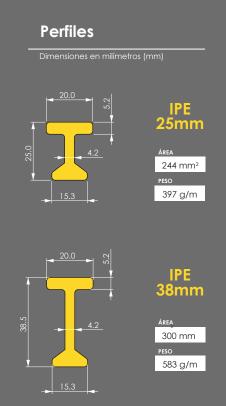
Elementos

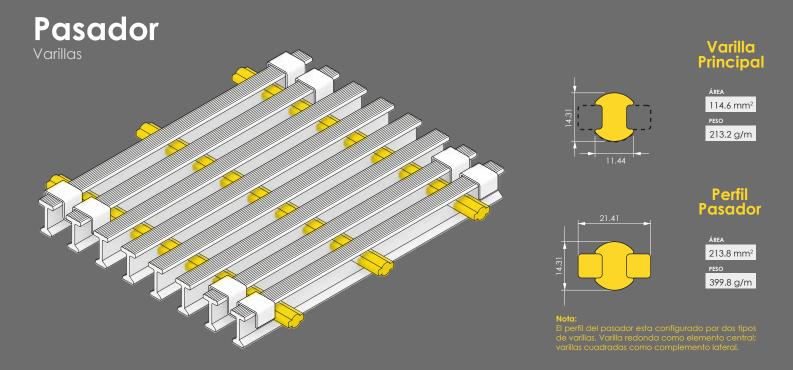

Barras

Elementos longitudinales en la configuración de la rejilla pultruida.

Pasadores

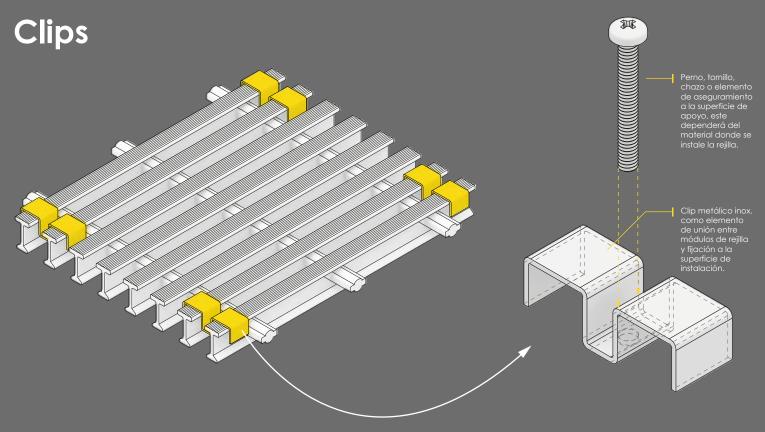
Elementos transversales en la configuración de la rejilla pultruida.

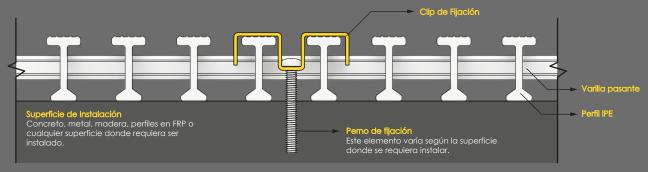

Clips


Clips de fijación entre secciones o módulos de rejilla y con la superficie de apoyo e instalación.

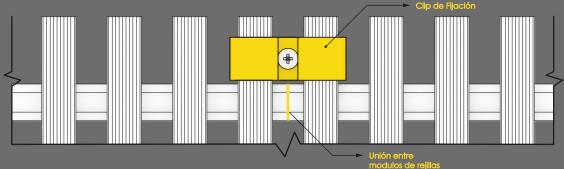
Rejillas Pultruidas

06. Configuración


Barra Perfil IPE

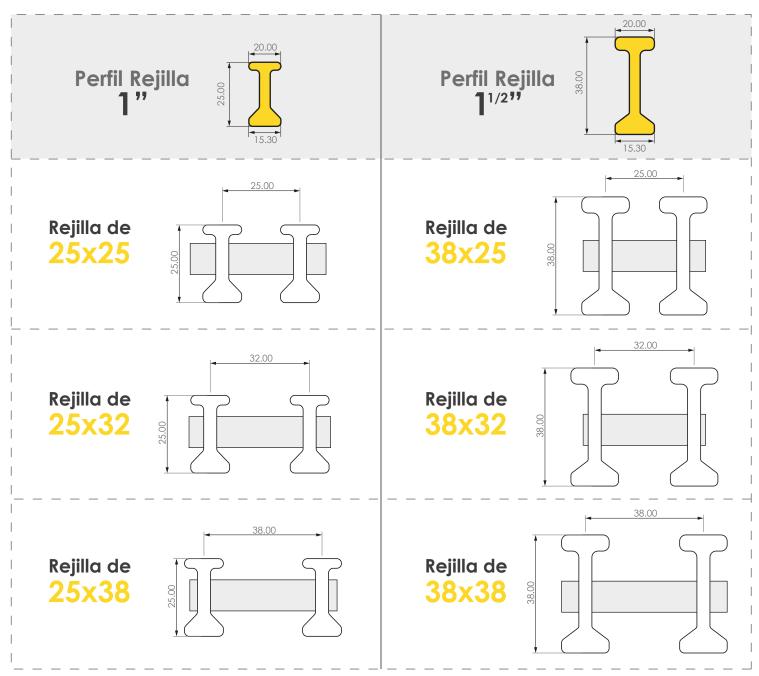


Rejillas Pultruidas


06. Configuración

Vista en Sección

Vista en Superior



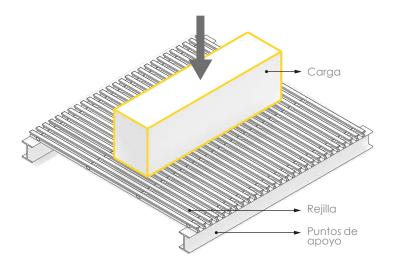
07. Tipos de Rejillas

Nota:

Las dimensiones y configuraciones de las rejillas FRP/PRFV están sujetas a cambios según el requerimiento del cliente y al proceso de diseño o validación estructural, así como la cantidad de perfiles, pasadores y dirección de la rejilla.

Perfil Rejilla 1"				Perfil Rejilla 1 ^{1/2} "			
Tipo de % Área % Área Peso Rejilla en vacio cubierta m²		Tipo de Rejilla	% Área en vacio	% Área cubierta	Peso Kg/m²		
rej-pd-25x25	20%	80%	17	rej-pd-38x25	20%	80%	25
rej-pd-25x32	39%	45%	14	rej-pd-38x32	39%	45%	20
rej-pd-25x38	46%	54%	12	rej-pd-38x38	46%	54%	17

08. Capacidad de Carga

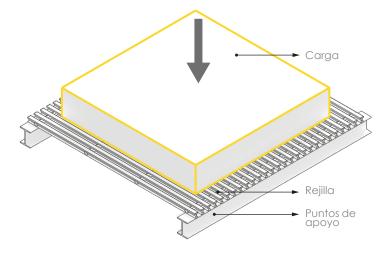

Cargar Lineal Concentrada (kg)

Carga lineal concentrada se refiere a la carga aplicada en el centro de la rejilla y está dada por la carga en kilogramos por cada metro lineal (kg/m).

Tabla de Cargas

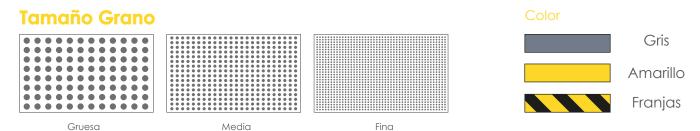
Rejilla	Distancia entre apoyos (mm)				
	500	750	1000	1250	1500
rej-pd-2538	1025	459	258	158	-
rej-pd-2532	1213	542	304	187	108
rej-pd-2525	1553	693	389	239	138
rej-pd-3838	3950	1763	991	612	353
rej-pd-3832	4661	2081	1169	722	417
rej-pd-2522	5966	2663	1496	924	534

Nota: El distanciamiento entre apoyos puede aumentar o disminuir según el requerimiento del cliente, el lugar donde se instale o validaciones estructurales y de diseño en relación con el uso que se le pretenda dar a la rejilla.


Cargar Distribuida (kg)

Carga distribuida se refiere a la carga uniforme aplicada en un area definida sobre la rejilla y está dada por la carga en kilogramos por cada metro cuadrado de área (kg/m2)

Tabla de Cargas


Rejilla	Distancia entre apoyos (mm)				
	500	750	1000	1250	1500
rej-pd-2538	3290	964	330	168	-
rej-pd-2532	3883	1137	389	198	114
rej-pd-2525	4970	1456	499	253	146
rej-pd-3838	12640	3703	1268	648	375
rej-pd-3832	14975	4370	1496	765	442
rej-pd-3825	19091	5593	1915	979	566

Nota: El distanciamiento entre apovos puede aumentar o disminuir seaún el reauerimiento del cliente, el lugar donde se instale o validaciones estructurales y de diseño en relación con el uso que se le pretenda dar a la reiilla.

09. Acabado y señalización

Acabados en grano medio o fino, y una gran variedad de colores que permiten a los sistemas de rejillas en FRP ajustarse a cualquier requerimiento o contexto a implementar.

Rejillas Pultruidas

10. Beneficios

- Resistencia a la intemperie.
- Resistencia a la corrosión
- Resistencia a químicos severos
- Larga vida útil
- Material dieléctrico
- No ejerce interferencia electrónica
- Resistente a impactos
- Peso ligero
- Mínimo mantenimiento
- Material aséptico
- Producto a la medida
- Puede ser antideslizante
- Se puede pigmentar del color deseado

- Sistemas modulares de bajo peso.
- Manipulacion por una sola persona

- Fácil instalación.
 Operación con herramientas
- Operación con herramientas de carpinteria tradicional.

